The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity.
نویسندگان
چکیده
Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs) are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.
منابع مشابه
Divergent effect of glycosaminoglycans on the in vitro aggregation of serum amyloid A.
Serum amyloid A (SAA) is an apolipoprotein involved in poorly understood roles in inflammation. Upon trauma, hepatic expression of SAA rises 1000 times the basal levels. In the case of inflammatory diseases like rheumatoid arthritis, there is a risk for deposition of SAA fibrils in various organs leading to Amyloid A (AA) amyloidosis. Although the amyloid deposits in AA amyloidosis accumulate w...
متن کاملHeparin Induces Harmless Fibril Formation in Amyloidogenic W7FW14F Apomyoglobin and Amyloid Aggregation in Wild-Type Protein In Vitro
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the rela...
متن کاملA Computational Approach for Identifying the Chemical Factors Involved in the Glycosaminoglycans-Mediated Acceleration of Amyloid Fibril Formation
BACKGROUND Amyloid fibril formation is the hallmark of many human diseases, including Alzheimer's disease, type II diabetes and amyloidosis. Amyloid fibrils deposit in the extracellular space and generally co-localize with the glycosaminoglycans (GAGs) of the basement membrane. GAGs have been shown to accelerate the formation of amyloid fibrils in vitro for a number of protein systems. The high...
متن کاملModulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance.
Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtua...
متن کاملInhibition of Amyloid Fibrils Formation from Hen Egg White Lysozyme by Satureia Hortensis Extract and its Effect on Learning and Spatial Memory of Rats
Background & Aims: Alzheimer's disease is a neurodegenerative disorder characterized by the abnormal aggregation of amyloid-β plaques in the brain. Although several studies have been done for finding effective medicines in the treatment of this disease, a drug that inhibits amyloid β aggregation and ameliorates the disorder has not been approved so far. One important therapeutic approach is use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2015